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F en-oelectnc matenals are currently used in a vanety of sensor and ‘actuator apphca’aons Con-
ventional materials.offer a high frequency, linear response.with useful. strains of up 10.0. 1%..
B Adchtmna.l applications can be imagined for actuators that generate a greater degree of strdin. '
- The gurrent mvcstlgatlon is aimed at offering increased actuator pcrformance over conventional
" materials. In addition, the study offers insight into the underlymg principles of behavior of those

IR 'matenals currently in use.” Experimental studies of large strain actuation has been camed out

-using a single crystal in a novel configuration; and theoretical studies have explored the possibil-
ity of extendmg tlus idea to polycrystals and to the ferroelecmc antiferroelectric phase transfor-
--matxon

Experlmental Studles :

“The. basic prmczplc of operation for large stram actuation using a ferroelec'mc single
crystal is illustrated in figure 1. A thin single crystal plate, is subjected to a constaht, uniaxial
compressive stress (P) and a variable electric field. At zero applied voltage, the apphed stress

. forces the polarization to bé in-plane, as illustrated in the figure. As the voltage is increased, the
electric field tries to alipn the polarization in the out-of-plane direction, but this is resisted by the
stress. There is an exchange of stability at a critical voltage and the polarization switches with an
accompanied strain, Fmally as the voltage is decreased, the polarization reverts back to an in-

, planc direction, recovering the strain. Thus, as. the load is held fixed and the voltage cycled, do-
main switching provides an électrostriction as large as 1. 1%. Strams as large as 6% are predjcted
for other matertals of the same class.

An experimental setup was designed to demonstrate the principle of large electrostriction
in single crystal ferroclectrics through combmed clectromechanical loading and to further study
the behavior of these materials under the combined loading conditions. The setup consists of a
loadmg mechanism, displacement measurement transducer h1gh-voltaoe power supply and long
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‘ '-workmg dlstance v;dco nucroscope The system was desxgned to apply a8 constant compresswe'. .
* - -load and vanable electric field to a ferroelectric crystal It was. fucther desigued to allow accurate --

- measurement of strain and polarization, as well as. allow réal tnme in situ observatnon of the do—
. main patterns- dirring the experiment.
o Expenments were performed on'single crystals of banum t1ta.nate of (00 1y and (100) ori-
_cntatlon at various levels of stress.. During the expenment, a slow voltage signal. is generated and
“the strain and polanzatnon are measured. - A series of strain-electric field trajectories are shown in

figure 2 at six values of compressive stress. The data are from the fifth cycle of each experiment.
-for an mmal]y (001) oriented crystal.. The'first plot bas a compressive stress of approXimately. |

zZero (thcre is-a’small stress present due to the- measurement method). In this case, the total strain - B

- is less.than 0, 1-%. ‘With subseqilent i increage in corupressive stress, thers is an increase in the’
maximum strain up to 0.9% at 2.14 MPa, and a broadening of the butterfly hystercsxs loops. As .-

| the stress is further-increased, the maximum- strain decreases as the applied field is not able to
_overcome the appllcd stress. Figure 3-shows a series of polarization-electric field traJectox‘les for

the same cases. ‘For the zero stress case, the hysteresis curve has very sharp comers.as is usually -

observed for smgle crystal fe:toelectncs As the stress is mcreased, there is a bluntmg ‘of the

- corners.

The steady statc actuation strain as a function of compressive stress is summanzed in ﬁg-

" ure 4. ‘I‘he actuation strain is defined as the difference between the maximum and minimum-
. .strain for 4 given half cycle.and was calculated in the fifth.cycle of each’ expenment ‘Data for

' initially (1 00) and (00 1) oriented crystals are shown. There is a clear i mcrease in actuation strain

with inicreasing stress in ‘each case. This actuation strain reaches a maximuin level and then be- -

: gms to decrease.” Coercive field, definied as the field required to reduce the polanzatxon to zero,

is shown as- a.function of compressive stress.in figure 5. The coercive field is found to be rela-'

- tively msensmve to stress with an increase of about 20-30 V/em/MPa. The usé of in situ micros- .

copy yields images ‘of the domain stiucture such as those in figure 6. Purther work is being done
to cotrelate the observations from the i images to the crystal avcraged values of strain and polan—

- zation. .

Theoretical Studies: Polycrystals

- . Theotetical 'studies have examined whether this modc of large strain acmauon could be
extended to polycrystalline ceramics, and if so what textures would be required to maxinaize the -

. actuation. . Additionally, the theoretical studies have addressed the w1de1y known, but incom-
‘pletely understood , observation that Lead Zirconate Titanate (PZT) is easier to pole at composi-
tions close to the sorphotropic phase boundary.

_ A detailed model of the effective electmmechamcal properties of ferroelectric erystals
that includes implicitly the domain pattcms and the polycrystalline texture has been developed.
It starts:with a- Landau-szburg type model adapted to beterogeneous materials, and finds the
large scale behavior using the framework of relaxation and homogenization assuming separation

" of scales between the macroscopic specimen, grains and domains. The imaportant ideas are illus-
trated in Figure 7. The set of possible effective remnant polarizations and strains of single
crystals with' multiple domains is-characterized for various crystal systems. The set of possible
effective remnant polarizations and straing of polycrystalhne ceramics is also characterized and
evaluated for different- rnatmals and textures usmg the Taylor bound.
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It is cstabltshed that a polyorysml of a matenal Whlch is cubxc above Cune tmperatuze :
and <100> polarized tetragonal below has nio remnant polanzauon or strain uhless it has a strong -
<100> texture. Similarly; a polycrystal ofa matenal which is eubic above Curie temperature and .
<I11> polarized: rhombohedral below has no temnant polarization or strain unless it has a strong .
<111>"texture. Thus, it'is hecessary to tise highly textured single. crystals to obtain large strain -

. . ‘actnation in ceramics of these two classes of materials.. In stark contrast, & polycrystal of a mate- .
rial which is.cubic above Curie temperature and <l11w> polarized monoclinic always has some -

© remnant, polanzaﬁon and stram u'respecnve of texture, though ‘there are specml textures for

" which it is maximized.

‘ These observations. also. explam the better polabahty of Lead Zxrconatc Tltanatc (PZT).
near the motphotroplc phase boundary Titagjum rich PZT is tetragonal, while Zirconium rich.
‘Titanate is rhombohedral but PZT is monochmc at’ the morphotropxc phase boundary

Theorehcal Studles. Ferroelecmc-antlferroelectrxc transformatmn ;

.During the final year, the attentlon focussed on ferroelecmc anuferroelecmc m‘ansfonnatnon We
discuss the speclﬁc case of lead-zirconate (PbZrOs) to explain the ideas. Pure lead—nrconate :

- "(PbZrOs) undergoes a phase transformation -from ‘a cubic noa-polar pcrovskite state at high-.
temperature to a tetragonally distorted antl-fenoelecmc state!' (AFE) at low temperature. When
.subjected to an electric field along a pseudo-cubic axis at low temperature, it undergoes a further - .
.phasé transformatxon from the tetragonally distorted AFE to a rhombohedrally distorted fcrroe-_ to.
:lectric state® (FE). This is the-so-called ferroelectric- antiferroelectric phase trmzsformatlon. -Thc .
temperature vs electnc field phase dlagram 1§ shown schcma'ucally in Figure 8. -

© This AFE-FE phase transformatmn potcntxally offers vety mteresnng possxb1ht1es for actuatlon. .
" If we take a PbZrQO; crystal at room temperature and subject it to an cychc electric field along a.
- pseudocubic direction (schematically indicated by the dashed line in Figure 8), _thc crystal
switches cyclically and reversibly between the' AFE and FE states. This switching is accompa-
‘nied with a large distorsion, which can be exploited as large actuation strain. Note i in patticular,
that there is no need to apply tie mechanical. Ioads to obtam reversal as we had to doin BaTl 03

We undertook & theoretlcal study to undcrstand if thlS potentlal could be cxplmted o practlce for
large strain actuation. The key issue is to.understand the energy barriers for such a transition and

_ to design a configuration that maximal actuation. This requires us to develop a model that is de-
tailed cnough to study the domain patterns, but at the same time tractable enough to study mac-

- roscopic specunens A purely atomistic theory would not be able t¢ deal with macroscopic bod-
- ies, and a macroscopic atomlstlc continuum theory will not be. able to deal with details of the

! An anti-ferroelectric material is one where the erystal lattice is spontancously polarized at a

molecular scale, but the polarization alternates between opposite directions so that there is no
_ macroscopic polanzatlon

2 A ferroelectric material is one where the crystal lattlce is spontaneously polarized at both the
: mrcroscowc and macroscopic states. .
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, domams 'I'herefore we chose to proceed along the lmes of Shu and Bbattacharya Their model, .
- and theoretical mvesnga’aen motivated the- successful expenments ‘on BaTiOs that were reported

* during the previous years, Therefore it was natural to extend the Shu-Bhattacharya model to
. anh-fmroclcctncs : ; . . o

' ;The key ided of thls model is 0. mtroduce a meso"-scale between the atomlsnc (micro-scale)
.and-the contimmumm (macro-scale). ‘The meso-scale is the scale on whick: the polanzanons are al-. -
most constant. so that it represents the gcale of domains. Speclﬁcally, at this scale thé polariza-

- tion is non-zero is a FE ‘while it is non-zero in an"AFE. We then introduce an energy ‘functional -

* at this mego-séale. It is important that this meso-scale energy correctly represents the underlymg
-physics at the micro- ~scalé, In particular, it is erucial and.difficult to understand the non-local
(dlpole-deole interaction) energy of the polanzat:ons since thcy can osclllatc at-the macro-scale‘
in an AFE. ‘We accomplished this step’ usmg a codrse-graining (n:ucro to meso passage) using a

* tmethod first proposed by James and Miiller* in the context of magnetism. We showed that the .
non-local dipole-dipole mtcracuon ‘at the micro-scale manifests itself complctcly locally inan -

_ AFE but non-locally i ina FE. We ﬁnally used’ energy wells to capt:ure the spontaneous polanza- .
txon and dlstorsxcms o

We used the energy ﬁmctlonal to study the bebavior at the mesa-scale (domain pattems) and 1ts
. influence on the macroscopic behavior of the material during the AFE-FE transition. In particu-.

. lar we studied all possible interfaces between the FE and AFE states. *An important result i is that
there is no low energy interface between a homogeneous AFE, and homogeneous FE states In-
stead all interfacés would require either the FE or the AFE states to be frustratéd. This i in turn

- .means that elther the AFE-FE transformation will yield very. little strain or will require large
electric fields. We conclude; therefore that the AFE-FE transformation, despite all its attractlve
.features is riot feas1ble for large stram actuatlon This will not bc pursued further. : |

“While the application to actuatlon is dxsappomnng, itisa demonstration of modeling 'rhat guxdes '
expenments and design. - Fiirther, the model we have. developed will fmd a vanety of uses in
: Other applxca‘uons which we plan to pursue in the future.

‘y.C. Shu and K. Bhattacharya, “Domain patterns and macroscopxc behavior of ferroelectric
materials”, Philosophical Magazine
81 2021-2054, 2001.
. *R.D. James and S. Miiller, “Internal variables and fine-scale oscillations in mlcromagnetlcs”.
' Continuum Mechanics and Thermodynamics 6 291-336, 1994.
* Unless the Spontaneous polanzanon and distortions satisfy some highly non-gencnc condmons.




19/24/2003 ©9:85 16265834963 _ , R PAGE

o8

REPORT DOCUMENTATION PAGE (SFZQB)

FERE (Contmuatlon Sheet)

'

Flgure 1 Mode of operanon for largc stram clecﬂosmctton ina. ferroelectno smgle crystal
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Figure 6 —Images of domain pattern in inidally (001) oriented crystal under 3.2 MPa compressive
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Figure 7 -“The'multi-well stractuze of stoxcd enesgy densxty W, the cffecnve cncrgy density of a sin-’
gle crystal W, and the effecuve energy densrcy ofa polycrysml . : . -
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